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Abstract--The effect of varying strain ratio (Ra) on initially uniform and non-uniform orientation distributions of 
passive marker lines is calculated. The frequency graphs for uniform distributions have a unimodai form 
(Gaussian-like distribution), centered in the finite extension direction (X) of the strain ellipse. The maximum 
frequency is related to the strain. Using non-uniform distributions the frequency graph has a different unimodal 
pattern. The difference between the measured strain ratio (R) with the maximum frequency and the true strain 
ratio (Ra) to the initial distribution is quantified for different types of distribution. 

The method is applied to samples of gneiss from southern Spain, using the orientation of tourmaline and 
feldspar lying in the schistosity plane, with respect to the stretching lineation. The strain of the marker 
distribution has been quantified, and after distinguishing the initial type of distribution, the true strain ratio of the 
whole rock in the schistosity plane can be estimated. 

INTRODUCTION 

STg~aN analysis using linear or planar distributions of 
passive markers was developed initially by March (1932) 
for strain-modified homogeneous distributions. Sub- 
sequently, Owens (1973) extended March's theory to 
any initial type of distribution. Sanderson (1973, 1977), 
Roberts & Sanderson (1974), Harvey & Laxton (1980), 
De Paor (1981) and Sanderson & Meneilly (1981) have 
used orientation distributions of lines with passive be- 
haviour, in deformed rock, to determine the two- and 
three-dimensional strain. They showed that the shape of 
the strain-modified frequency distribution is related to 
both the amount of strain and the initial type of distri- 
bution. Alternatively, the length of linear markers has 
been used also by Panozzo (1984, 1987), Sanderson & 
Phillips (1987) and Wheeler (1989). 

Deformed distribution analysis can be performed 
using the shape of frequency graphs (Lloyd 1983) with 
the asymmetry (ill, coefficient of skewness) and the 
peakness (f12, coefficient of kurtosis) parameters, or 
using a vectorial approach, through the calculation of 
the magnitude and the orientation of the resultant addi- 
tion vector (r) (Mardia 1972, Sanderson 1977). 

The aim of this work is to present a strain analysis 
method in two dimensions using the maximum fre- 
quency of the unimodal distributions of passive marker 
lines. The theoretical basis for this analysis was first 
developed by Sanderson (1977). To find the initial type 
of distributions the maximum frequencies observed and 
the expected values of known theoretical distributions 
are compared. 

STRAIN-MODIFIED UNIFORM DISTRIBUTION 

Sanderson (1977) studied the effect of non-rotational 
(coaxial) deformation on an initially uniform orientation 
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distribution of passive linear markers. He showed that 
the initial distribution has a constant frequency (F) in a 
grouping interval or interval width W: 

Fan.- N W  (0 < W <- S) 
' S (S = 180 °, S = 360°). (1) 

After the deformation, the expected frequency in an 
interval (a~, eta) is: 

N 1 Fan, = "~ [tan- (Ra tan a~) - tan -1 (Ra tan al)], (2) 

where at and a( are the angles of any line measured with 
respect to the orientation of the extension axis (X) of the 
finite strain ellipse, before and after the deformation, 
respectively (Fig. 1). Ra is the finite ratio of the strain 
ellipse or true strain ratio (Ra = (1 + el)/(1 + e2)) and N 
is the number of lines studied (sample size). 

The strain-modified uniform distribution plotted in a 
frequency graph (F vs a~ or ai), has a symmetric and 
unimodal shape, with the maximum frequency at a~ = 0 
(X direction). Sanderson (1977) and Fernandez (1978, 
1987) showed that the frequency distribution follows an 
elliptical law, where relative frequency is related to the 
square of the strain ratio R~, in any direction. The 
comparison between this distribution and a Gaussian 
frequency distribution (see Sanderson 1977, fig. 3) 
shows a close similarity in the maximum frequency area. 
For this reason strain-modified uniform distributions 
will be treated as a Gaussian-like distribution, specified 
by: 

e x -  - F A ' ~ = O ~  I" L o~/2 J '  

where/~ is the arithmetic mean of the frequency distri- 
bution and a is the standard deviation. 

The linear markers rotate, with the deformation, 
towards the extension direction of the finite strain ellipse 
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Fig, 1. Rotation of passive linear markers during progressive simple shear deformation. Finite strain ellipse rotates towards 
the 'horizontal' axis of the reference system as a function of the angular shear strain, ~. The ellipticity of the finite strain 
ellipse is Ra, and is equal to (1 + el)/(1 + e2) (short axis with continuous line and long axis with broken line). The marker 
orientation around the finite extension direction as the strain rate increases is showed by the progressive decrease in a" value. 

(X) (Fig. 1). The number of elements near the X-axis 
orientation, expressed by the maximum frequency in a 
frequency graph, increases with increasing deformation 
(Fig. 2a). It is important that the axis of the reference 
system coincide with the finite principal strain axis (Fig. 
1). There is no difference, with this orientation criterion, 
between rotational and non-rotational deformations (cf. 
Lloyd 1983, Fernandez 1987) and the frequency distri- 
butions have the mean value centred at a[ = 0. The 
interval (a~, a-~), centred on the origin, has a maximum 
frequency (Fro). If a~ and a~ have small values the 
expression (2) can be simplified: 

N , 
F m = ~ R a ( a  2 - -  a ~ ) ;  

SFm . 

Ra = N(a~ - a~) (3) 

In the next section it is explained how to obtain the 
strain ratio of a deformed distribution from the maxi- 
mum frequency value (Fro) of unimodal frequency distri- 
bution using the expression (3). The measured strain 
ratio R is not equal to the true strain ratio Ra. 

circular statistics (S = 360 °) would be more rigorous. 
The angular variation rank plotted on the frequency 
graph is - 9 0  ° < ai, ai' -< + 90 °. When a i or a( are greater 
than +90 °, they are reconverted to a~ = a~ - 180 ° (Lloyd 
1983). 

The effect of deformation with 2 -< Ra -< 20 has been 
calculated using theoretical uniform initial distributions, 
with different sample sizes ranging from 25 to 360. The 
new angular value for each linear element of the strain- 
modified distribution is obtained applying the Wettstein 
equation (Ramsay 1967): 

tan a[ = t a n  a i ( R a )  -1 

to the elements of the undeformed distribution. 
The distributions, deformed and non-deformed, are 

plotted in a frequency graph using different interval 
width (W) values. To normalize the frequency distri- 
bution with respect to the sample size studied (N) 
relative frequencies ( f  = F/N)  have been used. 

The graphical solution of expression (3) is plotted in a 
fm vs R graph for a determined Wvalue of 4 ° (Fig. 3). For 
R values lower than 10 the fro values change as a function 
of  fro ~ (2 log R)/10. 

STRAIN ANALYSIS USING fro VALUES 

Linear distributions (S = 180 °) have been used in the 
orientation description (a~ and ai) of each linear ele- 
ment, although the use of circular distributions and 

Confidence intervals for X-axis and R 

Assuming a Gaussian-like distribution for the strain- 
modified frequency distribution it is possible to estimate 
confidence intervals for the X-axis position. Binomial 
probability tables (in Fisher 1948 and Cheeney 1983) of 
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Fig. 2. Frequency graphs, fvs  ai', of: (a) strain-modified uniform distribution; (b) strain-modified non-uniform orientation 

distribution. Sample size of 360 elements, interval width of 10 ~ and modal grouping. 
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the Student's test (t values) for the 95% confidence 
intervals have been used to estimate the X-axis position 
for several sample sizes. The 95% confidence interval 
for the orientation of the Xprincipal strain direction in a 
strain-modified uniform distribution is obtained using 
the expression: 

to 
X = ~ + ~ degrees. 

The R values for the 95% confidence interval bound- 
aries are calculated using the expression (3) with the X- 
axis 95% confidence interval. These values are plotted 
as broken lines in Fig. 3. 

Type of  grouping and population size 

Fisher (1989) showed that the shape o f  a frequency 
distribution diagram is related to the interval width (W) 
and interval boundaries used. It has been compared for 
thefm and R values obtained for different W values (e.g. 
W = 4 °) and interval boundaries. Strain-modified uni- 
form distributions are grouped with two types of interval 
boundaries. One, defined with respect to the mode value 
(am) (e.g . . . .  a"  - 2°la" + 2 °, a~ + 2°la" + 6 °, . . . )  is 
called modal grouping, and the other with interval 
boundaries defined with respect to any other value (e.g. 
0 °, ... 0*/4 °, 4°/8 °, 8°/12 ° . . .)  is called random grouping 
(Figs. 4a & b, respectively). If a random grouping is used 
with continuous interval boundaries (e.g . . . .  0*/4 °, 1°/5 °, 
20/6 °, . . . ) ,  the results are similar to that obtained with 
the modal grouping. 

The R value obtained from strain-modified distri- 
butions grouped with different interval widths (W) de- 
creases as W values increase. This pattern is, however, 
dependent on the type of grouping used (Figs. 4a & b). 
With modal grouping, R values decrease more regularly 
than with random grouping. The angle of this plot (it 

angle), measured anticlockwise from a vertical line, is 
defined by the R values obtained with the extreme 
interval widths used (Rwi) and the difference between 
both W (W1 = 2 ° or 4 ° and W2 = 10°): 

-1 r(Rwl- Rw ) l 
6 = t a n  L (w2 w1) J (4) 

The asterisk expresses the use of modal grouping. The 6 
angle value is related to the true strain ratio Ra as shown 
in Fig. 5. 

The R value measured by this method is always less 
than the true strain ratio R a. For interval widths of 2 ° and 
4 ° the difference between R and Ra, (D = R - R~), is 
smaller. The D value is minimal up to R = 10 (R a ~- R + 
(R tan 3°)) increasing exponentially for greater strain 
ratios. Figure 6 can be used to quantify this difference. 

Sample sizes smaller than 50 measurements are not 
advisable for this method,  because the measured R has a 
large variation with respect to R~, (R a = R _ 2). The 
strain ratio obtained using sample sizes greater than 200 
does not give more than a 3% improvement in accuracy 
with respect to the N = 100 value (Figs. 4a & b). 

Non-uniform distributions 

For strain measurement with angular data, the initial 
type of distribution considered was either uniform (San- 
derson 1977, Sanderson & Meneilly 1981) or Gaussian 
(Sanderson 1973, Roberts & Sanderson 1974, Lloyd 
1983). None of these authors have discussed strain 
measurement using non-uniform distributions. These 
types of distributions have several clusters but no single 
preferred orientation. 

The random distribution showed in Fig. 7, with sev- 
eral cluster zones and without a marked orientation 
fabric, has been used to test the strain method in non- 
uniform distributions. The effect of deformation with 
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Fig. 3. Relationship between maximum relative frequency, .fm, and measured strain ratio, R. in logarithmic scale, for 
strain-modified uniform distributions. The discontinuous lines show the 95% confidence intervals of R, for sample sizes of 

25,100 and 200. 
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Fig. 4. Graph of interval width (W) vs measured strain ratio (R) for strain-modified uniform distributions, deformed by 
homogeneous strain with different values of strain ratios R, and sample sizes, N. Type of grouping: (a) modal grouping; (b) 

random grouping. The angle, measured anticlockwise, between this plot from a vertical line is the 6 angle. 

2 - Ra -< 20 in this distribution are compared with the 
results of the uniform distributions (Figs. 2a and 4). 
The resultant frequency graph (Fig. 2b) is unimodal with 
a marked asymmetric pattern. As strain rate increases 
the frequency graph becomes more pointed, symmetric 
and centred in the finite extension direction. The 
measured R values are always smaller than those ob- 
tained from the strain-deformed uniform distributions. 
For the type of non-uniform distribution used, the 
difference D (D = R - Ra) decreases linearly with the 
deformation, Ra = R + (R tan 0). For this example 0 = 
2 2 - 2 5  ° (Fig. 6). 
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Fig. 5. Relationship between the strain ratio R~ and the t5 angle for 
strain-modified uniform distributions. The continuous line is for 
sample size of 200 (close circles); the broken line for N = 100 (open 
circles). The numbers (1-6) and triangles refer to the six examples 

studied. 

APPLICATION OF THE METHOD TO GNEISSIC 
ROCKS 

The method has been applied to six outcrops in an 
orthogneiss body in SE Spain. These gnelsses belong to 
the Nevado-Filabride Complex of the Betic chain (for a 
more detailed geological setting see Garcia-Duefias et 
al. 1988). The strain in several outcrops was studied by 
Borradaile (1976) using a de-straining method. 

The examples studied have a pronounced schistosity 
and stretching lineation with a mean trend N100°E 
plunging 15-20 ° E The X direction of the finite strain 
ellipsoid is assumed to be parallel to the stretching 
lineation on the schistosity plane (assumed to be the X Y  
plane), with a 10 ° oscillation. This is defined by the 
orientation of prismatic minerals: tourmaline and feld- 
spar, and also by quartz elongation in recrystallized 
ribbons. The linear markers used were (c) axis of tour- 
maline crystals and (010) traces of feldspar crystals in the 
X Y  planes. The angles between the linear markers and 
the X direction were measured from photographs. 

The frequency distributions of the samples are plotted 
in Fig. 8 and the statistical parameters calculated are 
given in Table 1. For all the samples the mode ( a ' )  and 
the mean (/0 of the distributions are included in the 
oscillation rank of the Xdirection (X + 10°). The values 
of the fll coefficient, which represents the asymmetry of 
the distributions (Lloyd 1983), are almost zero with the 
exception of sample 1. Both of the abovementioned 
observations suggest initial types of distribution without 
preferential orientation, and the method explained 
above can be applied to obtain the strain ratio in these 
examples. 
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more uniform initial distributions of crystals (Figs. 5 and 
9). The anomalous fll parameter for the first sample can 
be explained by the high fm value in am at a certain 
distance (5.36 ° ) from the X-axis mean position (1.36°). 

Once the initial type of distribution for each sample 
has been estimated, the true deformation (Ra) can be 
obtained using Fig. 6. For the distributions closest to the 
uniform type, the D value is not greater than -0.5;  but 
in distributions such as initial non-uniform types, D can 
achieve a value of - 2  (Table 2). 

DISCUSSION 

Mechanical behaviour 

Using the fm values in conjunction with Fig. 3, R can 
be measured (Table 2). The initial type of distribution 
can be determined using the R values for each interval 
width (d. Fig. 9). The most asymmetric graphs, samples 
3 and 5 (ill > 0.2), have R vs W variation patterns which 
differ from those obtained from an initially uniform 
distribution (cf. Figs. 9 and 4a). The initial distribution 
for these examples is therefore probably non-uniform 
and without a single preferred orientation. The other 
samples, 2, 4 and 6, have more symmetrical frequency 
distributions and also smaller fll values, which indicates 

Strain methods usually assume that during the defor- 
mation, which is homogeneous at the scale studied, the 
markers have a passive mechanical behaviour (March 
1932, Ramsay & Huber 1983). Active markers in coaxial 
and non-coaxial deformations have been used also by 
several authors in two-dimensional (e.g. Lisle 1977, Le 
Theoff 1979) and three-dimensional systems (e.g. Reed 
& Tryggvason 1974, Shimamoto & Ikeda 1976, Blan- 
chard et al. 1979, Ferguson 1979, Freeman 1985, 1987). 
The minerals used as markers in this rock have a non- 
ideal mechanical behaviour. Ghosh & Ramberg (1976), 
Passchier (1987) and Hanmer (1990) showed that ellipti- 

Table 1. Statistical parameters of the examples studied. (Grid references are expressed in UTM co-ordinates. 
The asterisk (*) means modal grouping.) Column terms as defined in the text 

Sample G r i d  r e f e r e n c e  M ine r a l  N W fm 0t~n 6 ]A O" fll /~2 

1 30SWG855164 Tourmaline 196 4 0.174 - 4  8.53 1.36 21.27 1.517 6.688 
2 30SWG824148 Tourmaline 159 6* 0.119 +6 3,81 12.88 28.88 0.126 4.182 
3 30SWG836171 Feldspar 127 4 0.157 0 15.82 -8 .15 16.88 0.402 3.884 
4 30SWG822161 Feldspar 109 4 0.183 +8 9.46 6.13 10.82 0.027 4.678 
5 30SWG834164 Feldspar 115 8* 0.183 - 2  10.38 -10.72 34.61 0.254 3.379 
6 30SWG853134 Tourmaline 129 4 0.124 - 2  2.86 -3.01 17.63 0.007 5.071 
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arrow the mode (am) of the distribution. The asterisk expresses the use of modal grouping. Markers used: feldspar crystals 

(examples 3, 4 and 5) and tourmaline aeieular crystals (examples 1, 2 and 6). 

cal, rigid inclusions with axial ratio greater than 10, in a 
viscous matrix, have a passive behaviour and rotate at 
the same speed as the matrix. The tourmaline crystals 
have elongated prismatic shapes, with axial ratios (large 
axis/short axis) greater than 15. The behaviour of these 
crystals is similar to that of rigid inclusions. There is a 
difference in the viscosity ratio between crystals and 
matrix, which is expressed as broken crystals along basal 
planes (110). Crystal fragmentation constitutes an im- 
portant limitation to the strain analysis method, 
although the use of crystal fragments has been avoided. 
Because these crystals are preferentially broken when 
they reach the extension field of the strain ellipse, it 
produces exceptionally high values in the peakness of 
the frequency distribution, for example sample 1 (f12 = 
6.688). 

The different microstructures of feldspar crystals indi- 
cate a relative viscosity difference between them and the 
matrix. This difference has a minimum expressed by 
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Fig. 9. Graph of interval width (W) vs strain ratio (R) for the examples 
studied (examples 1-6). 

pinch-and-swell effect in crystals, and a maximum ex- 
pressed by o-type porphyroclasts (Passchier & Simpson 
1986). The axial ratios of the feldspar crystals are usually 
less than 10. Therefore these crystals rotated non- 
passively at a slightly lower rate than the matrix. Asym- 
metric frequency distributions such as found in samples 
3 and 5 (fit = 0.25-0.4) can be explained by differences 
in the behaviour of the feldspar crystals and the matrix, 

Type of deformation 

Sanderson's (1977) original method did not consider 
the effects of different types of deformations. Beach 
(1979), using non-passive markers (belemnites), related 
the rotational or non-coaxial deformations to the differ- 
ent positions of the arithmetic mean (p) and the mode 
(of) in a frequency graph. Lloyd (1983) showed that the 
shape of the frequency plot is related to the initial type of 
distribution and not to the type of deformation. 

The use of a reference grid coincident with the finite 
principal strain axis, removes the difference between 
non-rotational and rotational deformations. With this 
criterion, and strictly passive markers, the frequency 
distributions are always symmetrical with respect to the 
X-axis direction (Figs. 1 and 2) (Lloyd 1983, Fernandez 
1987). 

Table 2. Strain estimation of the examples studied. Column terms as 
defined in the text 

Sample fm R 95%--  R Distribution R~ 

1 0.173 7.83 5.75/10 -- Uniform 8.2 
2 0.119 3.57 2.2 / 5.75 ~ Uniform 3.7 
3 0.t57 7.06 5 /10 Non-uniform 7.4--8.6 
4 0.183 8.24 5.75/11.7 ~ Uniform 8.7 
5 0.183 4.12 3.1 / 7.6 Non-uniform 4.3--4.7 
6 0.124 5.58 8.6 / 4.1 ~ Uniform 5.9 
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The whole rock deformation in the examples  ana lysed  

is rotat ional .  This is shown as a sys temat ic  sense  of 
vorticity in the porphyroclast systems and  in a symmet r i c  

pat terns  of quartz  fabrics (Garcfa-Duefias  et al. 1988). 
Four  of the samples (2, 4, 5 and 6) have  f r equency  

dis t r ibut ions with a fairly symmetr ica l  shape  ( i l l  < 
0.27). In the more  asymmetric pa t te rns  ( samples  1 and  
3) the a m and/~  values are con ta ined  in the  obse rved  
var iat ion of the X direction. The  f requency  d i s t r ibu t ion  

shape is therefore  related to the strain rat io and  no t  with 
the type of deformat ion.  It is more  in f luenced  by the 
initial type of non-un i fo rm dis t r ibut ion and  the  m e c h a n -  
ical behav iour  of the markers. 

CONCLUSIONS 

(1) This  paper  describes a m e t h o d  of s t ra in  analysis  
using the m a x i m u m  frequency of de fo rmed  o r i en t a t i on  
dis t r ibut ions.  

(2) G r o u p i n g  the angular  d is t r ibut ions  wi th  respect  to 
the mode  (am) with different in terval  widths  gives an  
es t imate  of the initial type of d is t r ibut ion ,  by  compar i -  
son with the var ious pat terns of s t ra in-modif ied  un i f o r m  
dis t r ibut ions.  

(3) The  strain ratio ob ta ined  (R) is d e p e n d e n t  on  the 
initial type of dis t r ibut ion.  

(4) The  study of fro values in na tu ra l  f r equency  distri- 
bu t ions  of gneissic rocks using t ou rma l ine  a n d  fe ldspar  
crystals lying in schistosity p lanes ,  makes  it poss ib le  to 
de t e rmine  the strain and es t imate  the init ial  d i s t r ibu t ion  
type. Ell iptical  markers  must  have aspect ra t ios  larger  
than  10 to have a strictly passive behav iour .  

(5) A s y m m e t r i c  f requency d is t r ibut ions  with respect  
to the o r i en ta t ion  of the finite pr incipal  ex t ens ion  axis 
are caused  by a difference in the mechanica l  b e h a v i o u r  
be tween  the markers  and the matr ix ,  and  also by  the 
initial  d i s t r ibu t ion  not  being strictly un i form.  
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